
Secure Messaging:
Leveraging Rust to Create the Guardian’s
Anonymous Whistleblowing System
RustConf 2025, Seattle

Daniel
Hugenroth

Sam
Cutler

Zeke
Hunter-Green

@itsibitzi.dev @zekehg.bsky.social@lambda.bsky.social

Imagine you have discovered
wrongdoings and are ready to
talk a journalist…
how would you do that?

The first contact is
particularly difficult

Using anonymity networks (e.g. Tor)
can make one stand-out…

…and they can be
difficult to use

Avoid leaving digital footprints
from the beginning

Blowing the whistle is impactful, but tricky.

Embedded and activated
in every Guardian app

Cover traffic protects metadata of
real whistleblower messages

Strong plausible deniability
for sources

Use existing user base to build
large anonymity set

August 2022

Mansoor
Ahmed

Diana A.
Vasile

Daniel
Hugenroth

Ross
Anderson

Alastair R.
Beresford

Hey, this looks really interesting.

Let’s build this! Should not take

more than a few months…

August 2022

June 2025August 2022

So, where does Rust
fit into here?

very, very
security critical

Leveraging types for
guaranteeing safety

Making performance
a non-issue

Integrated testing and
observability approaches

It’s all about building
meaningful systems and
still sleeping well at night.

Our Rust project setup

tokio/async Rust throughout

axum for web services

anyhow for error handling

sqlx for talking to the database

vs.

Blazingly fast vs. easy-mode?

How can we use Rust to
improve misuse resistance?

Types!

Types!

New

Padded
Compressed

Encrypted

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
#[serde(transparent, deny_unknown_fields)]
pub struct PaddedCompressedString<const PAD_TO: usize>(Vec<u8>);

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
#[serde(transparent, deny_unknown_fields)]
pub struct PaddedCompressedString<const PAD_TO: usize>(Vec<u8>);

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
#[serde(transparent, deny_unknown_fields)]
pub struct PaddedCompressedString<const PAD_TO: usize>(Vec<u8>);

Provides extra properties
to basic types!

But what about the
cryptography!?

curve25519-dalek

Roles and Verification

States!

Type

Type state pattern

1. Operations on an object only exist when it is in the appropriate state.

2. States are encoded into the types. Attempts to use the operations in the
wrong state fail to compile

3. Types have functions that allow them to transition to other states, adding and
removing certain functionality

Type state pattern

1. Operations on an object only exist when it is in the appropriate state.

2. States are encoded into the types. Attempts to use the operations in the
wrong state fail to compile

3. Types have functions that allow them to transition to other states, adding and
removing certain functionality

Type state pattern

1. Operations on an object only exist when it is in the appropriate state.

2. States are encoded into the types. Attempts to use the operations in the
wrong state fail to compile

3. Types have functions that allow them to transition to other states, adding and
removing certain functionality

Roles

They see me Role-ing

Different keys have different security properties

● Different capabilities
● Long lived vs short lived

We can use the type system to prevent accidentally using more powerful keys or just the
wrong key.

define_role!(Organization);
define_role!(JournalistProvisioning);
define_role!(JournalistId);
define_role!(JournalistMessaging);

They see me Role-ing

// covernode_provisioning_key_pair: SigningKeyPair<CoverNodeProvisioning>
create_journalist(name, /* ... */, covernode_provisioning_key_pair);

// journalist_provisioning_key_pair: SigningKeyPair<JournalistProvisioning>
create_journalist(name, /* ... */, journalist_provisioning_key_pair);

Verification

Signed Forms

Signed & typed forms for API calls

pub struct Form<T, R>
 where
 T: serde::Serialize + serde::DeserializeOwned
 R: Role {
 body: Vec<u8>, // base64
 signature: Signature,
 // ...
}

Signed & typed forms for API calls

pub struct Form<T, R>
 where
 T: serde::Serialize + serde::DeserializeOwned
 R: Role {
 body: Vec<u8>, // base64
 signature: Signature,
 // ...
}

pub struct Form<T, R>
 where
 T: serde::Serialize + serde::DeserializeOwned
 R: Role {
 body: Vec<u8>, // base64
 signature: Signature,
 // ...
}

Signed & typed forms for API calls

pub struct Form<T, R>
 where
 T: serde::Serialize + serde::DeserializeOwned
 R: Role {
 body: Vec<u8>, // base64
 signature: Signature,
 // ...
}

Signed & typed forms for API calls

Types give us superpowers!
But they are not the end of
the story

Testing and Observability

Integration testing: test containers

Integration testing: test containers

Integration testing: time travel

common/src/time.rs

#[cfg(debug_assertions)]
pub fn now() -> DateTime<Utc> {
 read_fake_time_from_file()
}

#[cfg(not(debug_assertions))]
pub fn now() -> DateTime<Utc> {
 Utc::now()
}

Integration testing: time travel

integration-tests/journalist_key_rotations.rs

// ...
new_key = create_journalist_key_and_publish_to_api(stack.now());
keys = fetch_keys_from_api();
// assert new_key in api response

stack.time_travel(stack.now() + Duration::days(14))

keys = fetch_keys_from_api();
// assert new_key NOT in api response since it’s expired!

Integration testing: test vectors

integration-tests/journalist_key_rotations.rs

// ...
new_key = create_journalist_key_and_publish_to_api(stack.now());
keys = fetch_keys_from_api();
// assert new_key in api response

save_test_vector!("journalist_key_created", &stack);

stack.time_travel(stack.now() + Duration::days(14))

keys = fetch_keys_from_api();
// assert new_key NOT in api response since it’s expired!

Observability

Amazon Cloudwatch

Observability

covernode/src/from_user_polling_service.rs

metrics::counter!("U2JMessagesFromKinesis").increment(num_messages);

Observability

api/src/main.rs

async fn main() -> anyhow::Result<()> {
 let config = aws_config::load_from_env().await;
 let cloudwatch_client = aws_sdk_cloudwatch::Client::new(&config);

 metrics_cloudwatch::Builder::new()
 .cloudwatch_namespace("API")
 .send_interval_secs(60)
 .init_thread(cloudwatch_client)

 // ...
}

Amazon Cloudwatch

Observability

api/src/main.rs

async fn main() -> anyhow::Result<()> {
 // ...
 let app = Router::new()
 .route("/public-keys", get(get_public_keys))
 // more routes ...
 .layer(axum_metrics::MetricLayer::default());

 axum::serve(listener, app).await?;

 // ...
}

Monitoring
an opaque system

Our use of Rust

Type system

Compile time-guarantees; roles and key verification checks

Mature ecosystem

Web services, metrics, tracing, error handling, testing, …

Cargo

Trusted partner; great integration with ecosystem

SecureMessaging is live!

Handling 5,000,000+ cover messages per day

0 to 100 roll-out over a few weeks

Academic partnership

Published white paper and incorporated learned lessons in curriculum (P79).

Available as open-source

Check-out our repository on GitHub: github.com/guardian/coverdrop

What we couldn’t cover today…

We use Tauri for the UI which
allows us to reuse a lot of the
common shared codebase.

Journalist client Performance wins The actual protocol

The main ingress endpoint runs
at <10% CPU on a small AWS
instance. Migrated from a
webassembly CDN function.

There is a lot of interesting
protocol and cryptography work
that covered in the white paper.

Thank you!

Mansoor
Ahmed

Diana A.
Vasile

Daniel
Hugenroth

Ross
Anderson

Alastair R.
Beresford

Sam
Cutler

Zeke
Hunter-Green

Dom
Kendrick

Luke
Hoyland

Sabina
Bejasa-Dimmock

Mario
Savarese

Philip
McMahon

Marjan
Kalanaki

Chloe
Kirton

Learn more:

coverdrop.org

The original CoverDrop research team The Guardian crew and contributors

http://coverdrop.org

fin.

